Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
Antiviral Res ; 212: 105570, 2023 04.
Article in English | MEDLINE | ID: covidwho-2288776

ABSTRACT

Coronaviruses, as enveloped positive-strand RNA viruses, manipulate host lipid compositions to enable robust viral replication. Temporal modulation of the host lipid metabolism is a potential novel strategy against coronaviruses. Here, the dihydroxyflavone pinostrobin (PSB) was identified through bioassay that inhibited the increment of human coronavirus OC43 (HCoV-OC43) in human ileocecal colorectal adenocarcinoma cells. Lipid metabolomic studies showed that PSB interfered with linoleic acid and arachidonic acid metabolism pathways. PSB significantly decreased the level of 12, 13- epoxyoctadecenoic (12, 13-EpOME) and increased the level of prostaglandin E2. Interestingly, exogenous supplement of 12, 13-EpOME in HCoV-OC43-infected cells significantly stimulated HCoV-OC43 virus replication. Transcriptomic analyses showed that PSB is a negative modulator of aryl hydrocarbon receptor (AHR)/cytochrome P450 (CYP) 1A1signaling pathway and its antiviral effects can be counteracted by supplement of FICZ, a well-known AHR agonist. Integrative analyses of metabolomic and transcriptomic indicated that PSB could affect linoleic acid and arachidonic acid metabolism axis through AHR/CYP1A1 pathway. These results highlight the importance of the AHR/CYP1A1 pathway and lipid metabolism in the anti-coronavirus activity of the bioflavonoid PSB.


Subject(s)
Coronavirus Infections , Coronavirus OC43, Human , Coronavirus , Propolis , Humans , Lipid Metabolism , Cytochrome P-450 CYP1A1/genetics , Cytochrome P-450 CYP1A1/metabolism , Cytochrome P-450 CYP1A1/pharmacology , Propolis/metabolism , Propolis/pharmacology , Receptors, Aryl Hydrocarbon/metabolism , Linoleic Acid/pharmacology , Linoleic Acid/metabolism , Arachidonic Acid/metabolism , Arachidonic Acid/pharmacology , Cell Line
2.
Curr Pharm Des ; 28(35): 2867-2878, 2022.
Article in English | MEDLINE | ID: covidwho-2266994

ABSTRACT

Honey bees provide many products exerting a wide range of benefits to humans. Honey, propolis, royal jelly, beeswax, bee venom, bee pollen and bee bread have been used as natural medicines since ancient times because of their therapeutic effects. These products have demonstrated healing properties against wounds, diabetes, gastrointestinal diseases, cancer, asthma, neurological diseases, bacterial and viral infections. The antibacterial and antibiofilm activity of honey bee products is widely studied, and a huge body of evidence supports it. On the other hand, their antiviral effect has not been extensively studied. However, recent research has demonstrated their potential against various viral infections including SARS-CoV-2. Hence, honey bee products could be alternatives to treat viral diseases, especially when there is no effective treatment available. This narrative review aims to present up-to-date data (including ongoing clinical trials) regarding the antiviral activity of honey bee products, aiming to elucidate how honey bee product supplementation contributes to antiviral treatment.


Subject(s)
COVID-19 , Honey , Propolis , Bees , Humans , Animals , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , SARS-CoV-2 , Propolis/pharmacology , Propolis/therapeutic use
3.
Eur Rev Med Pharmacol Sci ; 26(2 Suppl): 53-60, 2022 12.
Article in English | MEDLINE | ID: covidwho-2205434

ABSTRACT

OBJECTIVE: No prophylactic treatment is available for individuals at high risk of developing COVID-19. This study, which was conducted between December 25, 2020, and January 25, 2021, is one of the first clinical studies to evaluate the efficacy of Anatolian propolis supplement against COVID-19. The aim was to obtain evidence on the prophylactic use of Anatolian propolis in individuals at high risk of developing COVID-19. SUBJECTS AND METHODS: This volunteer-based study was conducted in two centers. The study involved 209 healthcare professionals (physicians, nurses, medical secretaries) from Emergency Medicine Department of Medical Faculty of Ataturk University and Emergency Medicine Department of Rize Recep Tayyip Erdogan University. 204 participants meeting the study criteria were divided into two groups as experimental group and control group. The experimental group received 20 drops of BEE'O UP (BEE&YOU) 30% Propolis drops twice a day during a follow-up period of 1 month. The control group received no supplement but was followed up. The participants showing symptoms during the study and all the participants at the end the study were subjected to PCR testing. RESULTS: The evaluation of the results of PCR testing at the end of the study has shown that 14 participants from the control group and only 2 participants from the experimental group, who received Anatolian propolis supplement, were reported as positive cases. CONCLUSIONS: It has been found that a statistically significant protection was induced against COVID-19 infection in 98% of the experimental group, who received Anatolian propolis, compared to the control group.


Subject(s)
COVID-19 , Propolis , Humans , COVID-19/prevention & control , Propolis/therapeutic use , Propolis/pharmacology , SARS-CoV-2 , Health Personnel , Dietary Supplements
4.
Molecules ; 28(1)2023 Jan 01.
Article in English | MEDLINE | ID: covidwho-2166751

ABSTRACT

Propolis remains an interesting source of natural chemical compounds that show, among others, antibacterial, antifungal, antiviral, antioxidative and anti-inflammatory activities. Due to the growing incidence of respiratory tract infections caused by various pathogenic viruses, complementary methods of prevention and therapy supporting pharmacotherapy are constantly being sought out. The properties of propolis may be important in the prevention and treatment of respiratory tract diseases caused by viruses such as severe acute respiratory syndrome coronavirus 2, influenza viruses, the parainfluenza virus and rhinoviruses. One of the main challenges in recent years has been severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), causing COVID-19. Recently, an increasing number of studies are focusing on the activity of various propolis preparations against SARS-CoV-2 as an adjuvant treatment for this infection. Propolis has shown a few key mechanisms of anti-SARS-CoV-2 action such as: the inhibition of the interaction of the S1 spike protein and ACE-2 protein; decreasing the replication of viruses by diminishing the synthesis of RNA transcripts in cells; decreasing the particles of coronaviruses. The anti-viral effect is observed not only with extracts but also with the single biologically active compounds found in propolis (e.g., apigenin, caffeic acid, chrysin, kaempferol, quercetin). Moreover, propolis is effective in the treatment of hyperglycemia, which increases the risk of SARS-CoV-2 infections. The aim of the literature review was to summarize recent studies from the PubMed database evaluating the antiviral activity of propolis extracts in terms of prevention and the therapy of respiratory tract diseases (in vitro, in vivo, clinical trials). Based upon this review, it was found that in recent years studies have focused mainly on the assessment of the effectiveness of propolis and its chemical components against COVID-19. Propolis exerts wide-spectrum antimicrobial activities; thus, propolis extracts can be an effective option in the prevention and treatment of co-infections associated with diseases of the respiratory tract.


Subject(s)
COVID-19 , Propolis , Respiratory Tract Infections , Virus Diseases , Viruses , Humans , COVID-19/prevention & control , SARS-CoV-2/metabolism , Propolis/pharmacology , Virus Diseases/drug therapy , Antiviral Agents/chemistry , Viruses/metabolism , Respiratory Tract Infections/drug therapy
5.
Molecules ; 27(14)2022 Jul 19.
Article in English | MEDLINE | ID: covidwho-1938913

ABSTRACT

Propolis has gained wide popularity over the last decades in several parts of the world. In parallel, the literature about propolis composition and biological properties increased markedly. A great number of papers have demonstrated that propolis from different parts of the world is composed mainly of phenolic substances, frequently flavonoids, derived from plant resins. Propolis has a relevant role in increasing the social immunity of bee hives. Experimental evidence indicates that propolis and its components have activity against bacteria, fungi, and viruses. Mechanisms of action on bacteria, fungi, and viruses are known for several propolis components. Experiments have shown that propolis may act synergistically with antibiotics, antifungals, and antivirus drugs, permitting the administration of lower doses of drugs and higher antimicrobial effects. The current trend of growing resistance of microbial pathogens to the available drugs has encouraged the introduction of propolis in therapy against infectious diseases. Because propolis composition is widely variable, standardized propolis extracts have been produced. Successful clinical trials have included propolis extracts as medicine in dentistry and as an adjuvant in the treatment of patients against COVID-19. Present world health conditions encourage initiatives toward the spread of the niche of propolis, not only as traditional and alternative medicine but also as a relevant protagonist in anti-infectious therapy. Production of propolis and other apiary products is environmentally friendly and may contribute to alleviating the current crisis of the decline of bee populations. Propolis production has had social-economic relevance in Brazil, providing benefits to underprivileged people.


Subject(s)
Anti-Infective Agents , Ascomycota , COVID-19 Drug Treatment , Communicable Diseases , Propolis , Anti-Infective Agents/pharmacology , Anti-Infective Agents/therapeutic use , Bacteria , Humans , Microbial Sensitivity Tests , Propolis/pharmacology , Propolis/therapeutic use
6.
Med Res Rev ; 42(2): 897-945, 2022 03.
Article in English | MEDLINE | ID: covidwho-1925975

ABSTRACT

Propolis is a complex natural product that possesses antioxidant, anti-inflammatory, immunomodulatory, antibacterial, and antiviral properties mainly attributed to the high content in flavonoids, phenolic acids, and their derivatives. The chemical composition of propolis is multifarious, as it depends on the botanical sources from which honeybees collect resins and exudates. Nevertheless, despite this variability propolis may have a general pharmacological value, and this review systematically compiles, for the first time, the existing preclinical and clinical evidence of propolis activities as an antiviral and immunomodulatory agent, focusing on the possible application in respiratory diseases. In vitro and in vivo assays have demonstrated propolis broad-spectrum effects on viral infectivity and replication, as well as the modulatory actions on cytokine production and immune cell activation as part of both innate and adaptive immune responses. Clinical trials confirmed propolis undeniable potential as an effective therapeutic agent; however, the lack of rigorous randomized clinical trials in the context of respiratory diseases is tangible. Since propolis is available as a dietary supplement, possible use for the prevention of respiratory diseases and their deleterious inflammatory drawbacks on the respiratory tract in humans is considered and discussed. This review opens up new perspectives on the clinical investigation of neglected propolis biological properties which, now more than ever, are particularly relevant with respect to the recent outbreaks of pandemic respiratory infections.


Subject(s)
Propolis , Animals , Anti-Inflammatory Agents/therapeutic use , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Bees , Humans , Immunity , Immunomodulation , Propolis/chemistry , Propolis/pharmacology , Propolis/therapeutic use
7.
Environ Sci Pollut Res Int ; 29(39): 58628-58647, 2022 Aug.
Article in English | MEDLINE | ID: covidwho-1919917

ABSTRACT

This current study review provides a brief review of a natural bee product known as propolis and its relevance toward combating SARS-CoV viruses. Propolis has been utilized in medicinal products for centuries due to its excellent biological properties. These include anti-oxidant, immunomodulatory, anti-inflammatory, anti-viral, anti-fungal, and bactericidal activities. Furthermore, studies on molecular simulations show that flavonoids in propolis may reduce viral replication. While further research is needed to validate this theory, it has been observed that COVID-19 patients receiving propolis show earlier viral clearance, enhanced symptom recovery, quicker discharge from hospitals, and a reduced mortality rate relative to other patients. As a result, it appears that propolis could probably be useful in the treatment of SARS-CoV-2-infected patients. Therefore, this review sought to explore the natural properties of propolis and further evaluated past studies that investigated propolis as an alternative product for the treatment of COVID-19 symptoms. In addition, the review also highlights the possible mode of propolis action as well as molecular simulations of propolis compounds that may interact with the SARS-CoV-2 virus. The activity of propolis compounds in decreasing the impact of COVID-19-related comorbidities, the possible roles of such compounds as COVID-19 vaccine adjuvants, and the use of nutraceuticals in COVID-19 treatment, instead of pharmaceuticals, has also been discussed.


Subject(s)
Biological Products , COVID-19 Drug Treatment , Propolis , Anti-Inflammatory Agents , Antiviral Agents/pharmacology , COVID-19 Vaccines , Humans , Propolis/pharmacology , SARS-CoV-2
8.
Molecules ; 27(7)2022 Mar 28.
Article in English | MEDLINE | ID: covidwho-1785837

ABSTRACT

The chemical composition and antimicrobial activity of propolis from a semi-arid region of Morocco were investigated. Fifteen compounds, including triterpenoids (1, 2, 7-12), macrocyclic diterpenes of ingol type (3-6) and aromatic derivatives (13-15), were isolated by various chromatographic methods. Their structures were elucidated by a combination of spectroscopic and chiroptical methods. Compounds 1 and 3 are new natural compounds, and 2, 4-6, and 9-11 are newly isolated from propolis. Moreover, the full nuclear magnetic resonance (NMR) assignments of three of the known compounds (2, 4 and 5) were reported for the first time. Most of the compounds tested, especially the diterpenes 3, 4, and 6, exhibited very good activity against different strains of bacteria and fungi. Compound 3 showed the strongest activity with minimum inhibitory concentrations (MICs) in the range of 4-64 µg/mL. The combination of isolated triterpenoids and ingol diterpenes was found to be characteristic for Euphorbia spp., and Euphorbia officinarum subsp. echinus could be suggested as a probable and new plant source of propolis.


Subject(s)
Anti-Infective Agents , Diterpenes , Euphorbia , Propolis , Triterpenes , Anti-Bacterial Agents/pharmacology , Anti-Infective Agents/pharmacology , Diterpenes/chemistry , Euphorbia/chemistry , Molecular Structure , Morocco , Propolis/pharmacology , Triterpenes/chemistry
9.
J Integr Med ; 20(2): 114-125, 2022 03.
Article in English | MEDLINE | ID: covidwho-1739967

ABSTRACT

BACKGROUND: Propolis and honey have been studied as alternative treatments for patients with coronavirus disease 2019 (COVID-19). However, no study has yet summarized the full body of evidence for the use of propolis and honey in COVID-19 prevention and treatment. OBJECTIVE: This study systematically reviews the mechanisms of propolis and honey against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and current evidence for the use of propolis and honey in COVID-19 prevention and treatment. SEARCH STRATEGY: A systematic search was conducted of electronic databases including PubMed, Scopus, ScienceDirect, and Cochrane Library from their inceptions to April 2021. INCLUSION CRITERIA: Studies that evaluated the effect of propolis or bee products against SARS-CoV-2 using in silico methods, clinical studies, case reports and case series were included. DATA EXTRACTION AND ANALYSIS: A standardized data extraction form was used, and data were extracted by two independent reviewers. Narrative synthesis was used to summarize study results concerning the use of propolis or honey in COVID-19 prevention and treatment and their potential mechanisms of action against SARS-CoV-2. RESULTS: A total of 15 studies were included. Nine studies were in silico studies, two studies were case reports, one study was a case series, and three studies were randomized controlled trials (RCTs). In silico studies, using molecular docking methods, showed that compounds in propolis could interact with several target proteins of SARS-CoV-2, including angiotensin-converting enzyme 2, the main protease enzyme, RNA-dependent RNA polymerase, and spike protein. Propolis may have a positive effect for clinical improvement in mild and moderate-to-severe COVID-19 patients, according to case reports and case series. The included RCTs indicated that propolis or honey could probably improve clinical symptoms and decrease viral clearance time when they were used as adjuvant therapy to standard of care. CONCLUSION: In silico studies showed that compounds from propolis could interact with target proteins of SARS-CoV-2, interfering with viral entry and viral RNA replication, while clinical studies revealed that propolis and honey could probably improve clinical COVID-19 symptoms and decrease viral clearance time. However, clinical evidence is limited by the small number of studies and small sample sizes. Future clinical studies are warranted.


Subject(s)
COVID-19 Drug Treatment , Honey , Propolis , Humans , Propolis/pharmacology , Propolis/therapeutic use , Randomized Controlled Trials as Topic , SARS-CoV-2
10.
Int J Environ Res Public Health ; 19(5)2022 02 24.
Article in English | MEDLINE | ID: covidwho-1736897

ABSTRACT

The impact of globalization on beekeeping brings new economic, scientific, ecological and social dimensions to this field The present study aimed to evaluate the chemical compositions of eight propolis extracts from Romania, and their antioxidant action and antimicrobial activity against seven species of bacteria, including pathogenic ones: Staphylococcus aureus, Bacillus cereus, Bacillus subtilis, Pseudomonas aeruginosa, Escherichia coli, Listeria monocytogenes and Salmonella enterica serovar Typhimurium. The phenolic compounds, flavonoids and antioxidant activity of propolis extracts were quantified; the presence of flavones and aromatic acids was determined. Quercetin and rutin were identified by HPLC analysis and characterized using molecular descriptors. All propolis samples exhibited antibacterial effects, especially against P. aeruginosa and L. monocytogenes. A two-way analysis of variance was used to evaluate correlations among the diameters of the inhibition zones, the bacteria used and propolis extracts used. Statistical analysis demonstrated that the diameter of the inhibition zone was influenced by the strain type, but no association between the propolis origin and the microbial activity was found.


Subject(s)
Propolis , Anti-Bacterial Agents/pharmacology , Antioxidants/chemistry , Antioxidants/pharmacology , Bacillus cereus , Escherichia coli , Microbial Sensitivity Tests , Plant Extracts/pharmacology , Propolis/pharmacology , Pseudomonas aeruginosa , Romania
11.
Arch Microbiol ; 203(6): 3557-3564, 2021 Aug.
Article in English | MEDLINE | ID: covidwho-1216209

ABSTRACT

The angiotensin-converting enzyme (ACE)-related carboxypeptidase, ACE-II, is a type I integral membrane protein of 805 amino acids that contains 1 HEXXH-E zinc binding consensus sequence. ACE-II has been implicated in the regulation of heart function and also as a functional receptor for the coronavirus that causes the severe acute respiratory syndrome (SARS). In this study, the potential of some flavonoids presents in propolis to bind to ACE-II receptors was calculated with in silico. Binding constants of ten flavonoids, caffeic acid, caffeic acid phenethyl ester, chrysin, galangin, myricetin, rutin, hesperetin, pinocembrin, luteolin and quercetin were measured using the AutoDock 4.2 molecular docking program. And also, these binding constants were compared to reference ligand of MLN-4760. The results are shown that rutin has the best inhibition potentials among the studied molecules with high binding energy - 8.04 kcal/mol, and it is followed by myricetin, quercetin, caffeic acid phenethyl ester and hesperetin. However, the reference molecule has binding energy of - 7.24 kcal/mol. In conclusion, the high potential of flavonoids in ethanolic propolis extracts to bind to ACE-II receptors indicates that this natural bee product has high potential for COVID-19 treatment, but this needs to be supported by experimental studies.


Subject(s)
Angiotensin-Converting Enzyme 2/antagonists & inhibitors , COVID-19 Drug Treatment , Propolis/pharmacology , Animals , Bees , Caffeic Acids , Flavanones , Flavonoids , Hesperidin , Humans , Luteolin , Molecular Docking Simulation , Phenylethyl Alcohol/analogs & derivatives , Plant Extracts , Quercetin , Rutin
12.
Biomed Pharmacother ; 131: 110622, 2020 Nov.
Article in English | MEDLINE | ID: covidwho-996661

ABSTRACT

Propolis, a resinous material produced by honey bees from plant exudates, has long been used in traditional herbal medicine and is widely consumed as a health aid and immune system booster. The COVID-19 pandemic has renewed interest in propolis products worldwide; fortunately, various aspects of the SARS-CoV-2 infection mechanism are potential targets for propolis compounds. SARS-CoV-2 entry into host cells is characterized by viral spike protein interaction with cellular angiotensin-converting enzyme 2 (ACE2) and serine protease TMPRSS2. This mechanism involves PAK1 overexpression, which is a kinase that mediates coronavirus-induced lung inflammation, fibrosis, and immune system suppression. Propolis components have inhibitory effects on the ACE2, TMPRSS2 and PAK1 signaling pathways; in addition, antiviral activity has been proven in vitro and in vivo. In pre-clinical studies, propolis promoted immunoregulation of pro-inflammatory cytokines, including reduction in IL-6, IL-1 beta and TNF-α. This immunoregulation involves monocytes and macrophages, as well as Jak2/STAT3, NF-kB, and inflammasome pathways, reducing the risk of cytokine storm syndrome, a major mortality factor in advanced COVID-19 disease. Propolis has also shown promise as an aid in the treatment of various of the comorbidities that are particularly dangerous in COVID-19 patients, including respiratory diseases, hypertension, diabetes, and cancer. Standardized propolis products with consistent bioactive properties are now available. Given the current emergency caused by the COVID-19 pandemic and limited therapeutic options, propolis is presented as a promising and relevant therapeutic option that is safe, easy to administrate orally and is readily available as a natural supplement and functional food.


Subject(s)
Antiviral Agents/pharmacology , Coronavirus Infections/drug therapy , Pneumonia, Viral/drug therapy , Propolis/pharmacology , Animals , Antiviral Agents/administration & dosage , Betacoronavirus/drug effects , Betacoronavirus/isolation & purification , COVID-19 , Coronavirus Infections/complications , Coronavirus Infections/virology , Dietary Supplements , Functional Food , Humans , Macrophages/drug effects , Macrophages/immunology , Monocytes/drug effects , Monocytes/immunology , Pandemics , Pneumonia, Viral/complications , Pneumonia, Viral/virology , Propolis/administration & dosage , SARS-CoV-2 , COVID-19 Drug Treatment
SELECTION OF CITATIONS
SEARCH DETAIL